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An experimentally accessible algorithm for changing the time scale associated with a dynamical variable is
proposed. In general, a differential controller can be applied to (a) identify the essential species in oscillatory
systems and (b) explore their role in the feedback loops. Here, we report on classifying electrochemical
oscillators by changing the time scale over which the electrode potential varies; the type of different
electrochemical oscillators is identified based on whether the controlled modification of pseudo-capacitance
induces or suppresses current oscillations.

1. Introduction

A general (although not exclusive) feature of oscillatory
chemical systems is the existence of essential species that form
destabilizing (usually fast autocatalytic or self-inhibitory) and
stabilizing (slow inhibitory) feedback loops.1-5 These loops can
be identified with stoichiometric network analysis2 of the
underlying complex reaction mechanism. Such analysis has
proven to be a valuable procedure in the classification of the
myriad of oscillatory chemical reactions6 and electrochemical
systems7 as well.

In oscillatory electrochemical systems the dynamical behavior
depends not only on the surface concentration of electrochemi-
cally active species but also on the potential drop across the
double-layer.8-10 When the electrode potential plays an essential
role in the origin of current oscillations, the electrochemical
system exhibits negative differential resistance (NDR) in a
certain region of the overpotential. The electrode potential can
play the role of either a fast activator (N-NDR) or a slow
inhibitor (S-NDR) species.7,9 The “N” and “S” letters refer to
the characteristic shapes through which the negative slope of a
polarization (current vs potential) curve may develop. Further-
more, in some systems, the N-NDR character is hidden (HN-
NDR). These systems can oscillate even under galvanostatic
conditions (N-NDR systems show bistability only).7

In recent years, an operational proceduresbased on studying
the dependence of dynamics on the cell resistanceswas
proposed to identify the type of an electrochemical oscillator.7

However, the effect of changing the resistance of a cell is not
always straightforward. Chemically, it can be achieved by
changing the composition of the electrolyte that, however, might
affect some kinetic parameters. Electronically, the cell resistance
can be modified by adding series resistance. In addition, the
solution resistance may be compensated by an electronic
feedback loop (current drop compensation). Such changes,
however, might introduce some global coupling to the system.9,11

In this paper, we propose an experimentally accessible
methodsbased on a “differential controller”sfor fine-tuning the

time scale over which the concentration of chemical species or
the value of other dynamical variables can vary. Since oscil-
lations require the accurate timing of the feedback loops, the
periodic behavior can be suppressed or induced by changing
the time scales. We demonstratesusing electrochemical systems
as testbedsshow the essential species can be identified and how
their role can be explored with the application of the controller.
In an unperturbed electrochemical system, the time scale of the
variation of the electrode potential is set by the double-layer
capacitance of the electrode. Therefore, a “differential controller”
has been designed to change the capacitance accordingly. The
effect of such changes is investigated in three prototype
electrochemical systems: (i) the electrodissolution of Cu in
phosphoric acid,12 (ii) the electrodissolution of Ni in sulfuric
acid,13 and (iii) the electrodepositon of Zn in acidic electro-
lyte.14-16 In all these systems, numerical simulations and
experiments are carried out, and the role of electrode potential
in the oscillatory mechanism is clarified.

2. Methods, Models, and Experiments

Differential Controller: A Versatile Tool for Changing
Time Scales.The differential controller is widely used for
process control in engineering.17 The main features of the
method can be summarized as follows. Let us take ann-variable
system with variablesxn. In mostcases, the dynamical behavior
of the system can be described by a set of ordinary differential
equations:

wherefk are component functions that depend on variablesk )
1, 2, ...,n, andεk defines the time scale for the variation of the
kth variable. (We note that time scalesεk strongly depend on
the specific forms of functionsfk.) A differential controller with
feedback strengthsRk can often be introduced in such a way
that the equations become
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εk dxk/dt ) fk(x1,x2,...,xn) (1)

εk dxk/dt ) fk(x1,x2,...,xn) + Rk dxk/dt (2)
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which can be rearranged as follows

The characteristic difference between eqs 3 and 1 appears
on the left-hand side of the equations. Whileεk values are fixed,
the new time scale valuesεk′ ) (εk - Rk) can be fine-tuned by
varying the control gains. (Note, however, that the controller
does not modify the stationary solution of eq 1, but it might
change the stability of the steady states.18) The differential
controller (eq 2) implemented only for a single variable can be
applied to change the time scale corresponding to that variable
without changing any other parameters in the system.

Design of Differential Controller for Electrochemical
Systems.In electrochemical systems thespecificdouble-layer
capacitanceCd (F/cm2) sets the inherent time scale for the
variation of the potential drope through the double-layer as
shown by the charge balance equation9 for potentiostatic mode
of operation:

wherejF is the Faradaic current density,c is the concentration
of some electroactive species,θ is surface coverage,V is the
applied circuit potential,A is the surface area of the electrode,
and RΩ is the cell resistance. In typical potentiostatic experi-
ments,V is controlled externally and the currenti ) (V - e)/
RΩ is measured. For the implementation of the differential
controller for variablee in the form of eq 2, we takeV as the
control parameter andi as the control variable, and invoke a
recursive version of the control algorithm. In experiments, the
circuit potential can be varied aroundVo according to the
following equation:

whereγ is the control gain. Combining eqs 5 and 4 results in
the following dynamical equation for the circuit potential of
the cell under recursive control:

The termCd′ ) -γ /(ARΩ) on the left-hand side of eq 6 acts as
a specific pseudo-capacitance. The term (Cd + Cd′) in eq 6 plays
the same role as the new time scaleεk′ ) (εk - Rk) in eq 3. In
the following sections, we shall study the effect of the specific
pseudo-capacitanceCd′ on the stability of three prototype
electrochemical oscillators. In the Experimental SectionCd* )
Cd′A (F) is used to denote pseudo-capacitance.

Model of Copper Electrodissolution.The Koper-Gaspard
dimensionless model19 was used to simulate the main dynamical
features of Cu dissolution in phosphoric acid solution:

whereV is the applied circuit potential,e is the double-layer
potential,R is the series resistance,d is the rotation rate,u and
w are the dimensionless concentrations of some electroactive
species, respectively, in the so-called surface and diffusion
layers, andk(e) is the potential dependent rate constant defined
as

whereθ is related to the potential dependent fractional surface
coverage by the electroactive species:

The experimentally measured quantity, the current, is obtained
asi ) (V - e)/R. Dynamics of model eqs 7-9 have been studied
in detail by Koper and Gaspard.19 For an appropriate range of
parameters the model simulates well the dynamical behavior
of Cu dissolution in phosphoric acid observed in our potentio-
static experiments.20,21 In this study we setR ) 0.02 andd )
0.11913, and the dynamical features are explored by systemati-
cally varying the circuit potentialV and the specific double-
layer capacitanceCd.

Model of Nickel Electrodissolution.A dynamical model for
the anodic electrodissolution of a nickel electrode is based on
two dimensionless variables, the double-layer potentiale and
the total surface coverageθ by NiO and NiOH. The differential
equations proposed by Haim et al.22 are as follows:

where V is the dimensionless circuit potential,R is the
dimensionless series resistance,Γ is the maximal surface
coverage, andjF is the Faradaic current density:

Equation 10a accounts for the charge balance in the double-
layer, while eq 10b follows from the mass balance and rate
equations for the electroactive species. The current is calculated
as i ) (V - e)/R. The parameter values (Ch ) 1600,a ) 0.3,
b ) 6 × 10-5, c ) 1 × 10-3, Γ ) 0.01, andR ) 50) were
optimized to obtain dynamical features similar to those observed
in experiments.11

Model of Zinc Electrodepostion.The Lee-Jorne´ model23 has
been applied to simulate the dynamics of Zn electrodeposition
under potentiostatic operation. The originally two-variable model
that quantitatively describes the experimentally observed S-
shaped polarization curve has been modified to incorporate the
potential (IR) drop through the electrolyte and an external
resistance in series with the electrochemical cell. The differential
equations are as follows:

(εk - Rk) dxk/dt ) fk(x1,x2,...,xn) (3)

Cd
de
dt

) -jF(c,θ,e,...) + V - e
ARΩ

(4)

V ) Vo + γdV
dt

- γRΩ
di
dt

) Vo + γdV
dt

- γRΩ
d
dt(V - e

RΩ
) )

Vo + γde
dt

(5)

(Cd - γ
ARΩ

)de
dt

) -jF(c,θ,e...) +
Vo - e

ARΩ
(6)

Cd
de
dt

) V - e
R

- 120k(e)u (7a)

du
dt

) -1.25d1/2k(e)u + 2d(w - u) (7b)

dw
dt

) 1.6d(2 - 3w + u) (7c)

k(e) ) 2.5θ2 + 0.01 exp[0.5(e - 30)] (8)

θ ) {1
exp[-0.5(e - 35)2]

for e e 35
for e > 35} (9)

Cd
de
dt

) V - e
R

- jF(θ,e) (10a)

Γdθ
dt

)
exp(0.5e)

1 + Ch exp(e)
(1 - θ) -

bCh exp(2e)

cCh + exp(e)
θ (10b)

jF ) ( Ch exp(0.5e)

1 + Ch exp(e)
+ a exp(e))(1 - θ) (11)
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wheree and V are, respectively, the double-layer and circuit
potentials,R′ is the resistivity of the electrode(Ω cm2), θ1 and
θ2 are, respectively, the time-dependent fractional surface
coverage by the adsorbed H and Zn+ (the maximal values are
Γ1 andΓ2), andAk are kinetic parameters. The Faradaic current
densityjF is defined according to

whereF is the Faradaic constant. The kinetic parameters were
optimized by Lee and Jorne´23 and are as follows (in mol cm-2

s-1): A1 ) 5.53 × 10-7 exp(-19.3e), A2 ) 3 × 10-9 exp(-
29.3e), A3 ) 2.45 × 10-5 exp(-33.8e), A3′ ) 7.5 × 10-5

exp(4.8e), A4 ) 1 × 10-6, A5 ) 5.4 ×10-8 exp(-38.6e), and
A6 ) 1 × 10-9. The applied values ofΓ1 and Γ2 were
approximated by Epelboin et al.14,15 from impedance measure-
ments: Γ1 ) 1.36× 10-7 mol cm-2, Γ2 ) 9.067× 10-11 mol
cm-2. To simulate the experimental observations, the current
density is calculated asj ) (V - e)/R′. In this study, we setR′
) 2.0 Ω cm2. The dynamical features are explored by
systematically varying the circuit potentialV and the specific
double-layer capacitanceCd.

Numerical Tools. The ordinary differential equations (eqs
7, 10, and 12) were solved numerically with XPPAUT program
package24 applying a fourth-order Runge-Kutta method with
variable step size. Bifurcation diagrams were constructed with
the built-in AUTO interface.

Experiments. The experiments on Cu and Ni electrodisso-
lution and Zn electrodeposion were carried out in a standard
three-electrode electrochemical cell equipped with a rotating
disk working electrode (Radiometer EDI-101), calomel reference
electrode, and Pt counter electrode.20 The working electrode was
a 5 mm diameter Cu disk (rotated at 1500 rpm) in 85%
phosphoric acid at-5 °C, a 1 mmdiameter stagnant Ni disk in
4 mol dm-3 sulfuric acid at 10°C, and a 7 mmdiameter Zn
electrode (rotated at 1000 rpm) in 0.72 mol dm-3 ZnCl2 + 2.67
mol dm-3 NH4Cl buffer (pH) 5,2) at 26°C in the Cu, Ni, and
Zn experiments, respectively.

The circuit potential was set and the current of the electrode
was measured (sampling frequency: 200 Hz) with a potentiostat
(Electroflex EF-451). The working electrode was connected to
the potentiostat through an external resistanceRext; the total
resistanceRΩ of the circuit is the sum of the external resistance
and the cell resistance measured with impedance spectroscopy.21

The differential controller was implemented by using a Pascal
program with real-time accuracy of 200 Hz. The circuit potential
was perturbed according to eq 5 using feedback gainγ, the time
derivative of circuit potential and current, and the previously
determinedRΩ. The added pseudo-capacitance is calculated as
Cd* ) -γ/RΩ (F). Further experimental details are given in
earlier publications.20,21

3. Results

3.1. The Effect of Changing the Pseudo-Capacitance on
an N-NDR Oscillator: Copper Electrodissolution in Phos-
phoric Acid. For the electrodissolution of copper in phosphoric
acid, the electrode potential was proposed to play the role of a
fast activator species.19 Numerical simulations and experiments
were carried out to confirm that the electrode potential is, indeed,
an essential dynamical variable of this N-NDR type oscillator,
and the effect of changing its time scale parameter was studied
systematically.

Numerical Simulations.Figure 1a shows a typical oscillatory
solution of the dimensionless model of Cu dissolution (eqs 7a-
c) at V ) 36.72. The current oscillations are suppressed by
increasing the (dimensionless) double-layer capacitance from
1 to 2.5 att ) 100. The oscillations die out with decreasing
amplitude after a short transient period. The corresponding
bifurcation diagrams as a function of circuit potentialV are
shown in parts b and c of Figure 1 atCd ) 1 and 2.5,
respectively. AtCd ) 1, the steady state loses stability through
a supercritical Hopf bifurcation. In a small region of the circuit
potential, complex oscillations develop through period doubling
bifurcations that eventually lead to chaos (not shown here).
However, with an increase ofCd to 2.5, both the periodic and
complex oscillations disappear, and only stable steady-state
solutions can be observed. It is seen from Figure 1d that the
oscillations are destroyed through a supercritical Hopf bifurca-

Figure 1. Simulations: Effect of changing the time scale associated
with the electrode potential on current oscillations in Cu electrodisso-
lution (N-NDR system). (a) Suppressing oscillations atV ) 36.72. At
t ) 100 (shown by an arrow) the value ofCd is changed from 1 to 2.5.
(b) One parameter bifurcation diagram as a function ofV at Cd ) 1:
solid thin line, stable steady state; dotted line, unstable steady-state;
solid thick line, maximum and minimum current values of stable
oscillatory solution; dashed thick line, maximum and minimum current
values of unstable oscillatory solution; H, Hopf-bifurcation; PD, period
doubling bifurcation. (c) Bifurcation diagram as a function ofV at Cd

) 2.5. (d) One parameter bifurcation diagram as a function ofCd at V
) 36.72. (e) Two parameter bifurcation diagram showing the locus of
Hopf bifurcations.

Cd
de
dt

) V - e
R'

- jF(e,θ1,θ2) (12a)

Γ1

dθ1

dt
) A1(1 - θ1 - θ2) - A2θ1 - A4θ1θ2 - A6θ1 (12b)

Γ2

dθ2

dt
) A3θ2(1 - θ1 - θ2) - A3′θ2

2 - A4θ1θ2 - A5θ2 +

A6θ1 (12c)

jF(e,θ1,θ2)/F ) - A1(1 - θ1 - θ2) - A2θ1 -

A3θ2(1 - θ1 - θ2) + A3′θ2
2 - A5θ2 (13)
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tion at Cd ≈ 2.2. The locus of Hopf bifurcation points shown
in Figure 1e divides theCd vs V parameter space into regions
of oscillatory and stable stationary solutions. It is seen in this
nonequilibrium phase diagram that there exists a maximal value
of Cd (approximately 2.4) above which oscillations are sup-
pressed at any circuit potential.

Experiments.Figure 2a shows that generating a large enough
pseudo-capacitance (Cd* ) 0.5 F) effectively destroys the
current oscillations during Cu electrodissolution. Note that
although oscillations seemingly cease, yet a small control signal
(not shown in the figure) is still required for stabilizing the
steady state; after turning off the control algorithm (and thus
resetting the double-layer capacitance), the current oscillations
reappear with exactly the same amplitude and frequency as those
before the control session. The maxima and minima of the
experimentally observed current oscillations are shown in Figure
2b as a function of the applied pseudo-capacitance. Oscillations
are suppressed through decreasing amplitude around the bifurca-
tion point at aboutCd* ) 0.8 F; the vanishing amplitude and
the finite frequency (not shown in the figure) are indicative of
a supercritical Hopf bifurcation similar to that found in
simulations. The current oscillations could be suppressed in a
large region of both experimental parametersV and Cd*. For
example, Figure 2c shows the maxima and minima of current
oscillations as a function of the circuit potential; oscillations
appear at aboutV ) 570 mV and disappear atV ) 690 mV.
With addition of Cd* ) 2 F, the oscillations cease, and only
steady states are observed.

As it has been pointed out earlier, the steady states of the
system do not change upon varying the time scale parameter,
in this case, by applying a finite pseudo-capacitanceCd*. Thus,
the experimentally determined steady states are, in fact, the
unstable states of the originally oscillating system. These
experiments indicate that the differential controller can also be
applied to construct experimental bifurcations diagrams showing
the positions of both stable and unstable steady states. We have
carried out experiments in a parameter region where chaotic

oscillations occur.20 The chaotic attractor could also be destroyed
by the control algorithm, and a stationary state is observed.

3.2. The Effect Pseudo-Capacitance on an HN-NDR
Oscillator: Nickel Electrodissolution in Sulfuric Acid. For
the electrodissolution of nickel in sulfuric acid the electrode
potential was proposed to play the role of a fast activator (similar
to Cu dissolution). However, in this system, the negative
differential resistance character of the polarization curve is
hindered by a slow process, and thus the negative resistance
can be observed only on the time scale of the oscillations.8,9

Such systems are known to produce a complicated bifurcation
diagram with the possibility of saddle-loop bifurcations. We
test the effect of changing the time scale of oscillations in a
parameter region where saddle-loop bifurcations are known to
occur.

Numerical Simulations. Oscillatory solutions of the model
of Ni electrodissolution can also be suppressed by increasing
the double-layer capacitance (Figure 3a). Bifurcation diagrams
with respect to circuit potential at low and high values ofCd

are shown in Figure 3, parts b and c, respectively. With small
Cd, the oscillations develop through a supercritical Hopf
bifurcation; however, they disappear with a saddle-loop bifurca-
tion associated with the formation of a homoclinic orbit. For
large values ofCd, the unstable steady state originating from
the Hopf bifurcation can be stabilized not only in the region of
inherent oscillations but also well over that until it disappears
through a saddle-node bifurcation (compare parts b and c of
Figure 3). Note that the stability of the saddle point does not
change with changing the double-layer capacitance; thus, the
differential controller is not capable of stabilizing saddle points.
Parts a and b of Figure 4 show, in a manner similar to that
found in the former case of Cu electrodissolution, that upon

Figure 2. Experiments: Effect of changing the time scale associated
with the electrode potential on current oscillations in Cu electrodisso-
lution (N-NDR system). (a) Suppressing oscillations atVo ) 590 mV
andRΩ ) 85 Ω by applying a pseudo-capacitance. Its value (Cd* )
0.5 F) is set with turning on the control algorithm for the period defined
by the arrows. (b) One parameter bifurcation diagram atVo ) 600 mV
andRΩ ) 85Ω showing the minima and maxima of current oscillations
as a function of the applied pseudo-capacitanceCd*. (c) One parameter
bifurcation diagrams as a function of the circuit potentialVo: solid
line, Cd* ) 0 F; dashed line,Cd* ) 2.0 F.

Figure 3. Simulations: Effect of changing the time scale associated
with the electrode potential on current oscillations in Ni electrodisso-
lution (HN-NDR system). (a) Suppressing oscillations atV ) 50. At t
) 300 (shown by an arrow) the value ofCd is changed from 1 to 2.5.
(b) Bifurcation diagram as a function ofV at Cd ) 1. Annotations are
the same as in Figure 1. SN: saddle-node bifurcation. (c) Bifurcation
diagram as a function ofV at Cd ) 2.5.
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increasing the time scale variable of the double-layer potential,
the current oscillations are suppressed through Hopf bifurcation.
There also exists a maximal value ofCd above which no
oscillations are possible independently of the applied circuit
potential. The locus of the Hopf bifurcation points in the two
parameter bifurcation diagram (Figure 4b) is different from that
found in the model of Cu electrodissolution. Here, the locus
ends abruptly because of a Takens-Bogdanov bifurcation
(collision of Hopf and saddle-node bifurcation points) takes
place.

Experiments. Similar to the experiments of copper electro-
dissolution, the current oscillations during Ni dissolution can
be suppressed by addition of pseudo-capacitance on the order
of 0.1-1 F. Figure 5 shows the results of scan experiments
without and with added pseudo-capacitance in which the circuit
potential was slowly increased. Without added capacitance,
oscillations appear via a supercritical Hopf and cease through
a saddle-loop bifurcation. After the saddle-loop bifurcation a
relatively low-current stable state is found only; this state
disappears at lower potentials with a saddle-node bifurcation.
When the potential scan is performed atCd* ) 0.694 F, no
oscillations are observed, and a high-current state prevails until
very large values of circuit potential. Our efforts to stabilize
the saddle point expected to lie between the high- and low-
current steady states were unsuccessful. All these experiments

are in good agreement with the predictions of numerical
simulations that in the Ni system current oscillations can be
suppressed with the differential controller and that the saddle
points cannot be stabilized.

3.3 The Effect of Pseudo-Capacitance on an S-NDR
Oscillator: Zinc Electrodeposition. In S-NDR oscillatory
systems the electrode potential plays the role of a slow
stabilizer.7,9 There are a few examples where the electrode
potential acts as a deactivator, most notably CO electrooxida-
tion,25 reduction of periodate ion on gold in the presence of
camphor,26 and Zn electrodeposition.14,15However, oscillations
are difficult to find because the electrode potential is a fast
variable as a result of the small value of double-layer capacitance
(µF/cm2). We shall apply the differential control algorithm to
prove the presence of feedback loops in the mechanism of Zn
electrodeposition and explore the characteristic features of the
oscillations.

Numerical Simulations. The model of Zn electrodepostion
exhibits no oscillations at lowCd values. However, current
oscillations can be induced by increasingCd as shown in Figure
6a. By comparing the calculated bifurcation diagrams as a
function of the circuit potential at low and highCd values (see
Figure 6, parts b and c), one can see that upon decreasing the
cathodic overpotential the oscillations develop through a su-
percritical Hopf bifurcation and cease via a saddle-node bifurca-
tion of the periodic orbits (following a subcritical Hopf
bifurcation). By changingCd at a fixed circuit potential (Figure
6d) the oscillations appear through a Hopf bifurcation at a
relatively large value of the double-layer capacitance (1 F/cm2).
In contrast to that observed in the case of Cu and Ni
electrodissolution, now a minimal value ofCd is found (Figure

Figure 4. Simulations: Effect of changing the time scale associated
with the electrode potential on current oscillations in Ni electrodisso-
lution (HN-NDR system). (a) One parameter bifurcation diagram as a
function ofCd at V ) 50. Annotations are the same as in Figure 1. (b)
Two parameter bifurcation diagram showing the locus of Hopf
bifurcations; solid square: Takens-Bogdanov bifurcation (collision of
Hopf and saddle-node bifurcation points).

Figure 5. Experiments: Effect of changing the time scale associated
with the electrode potential on current oscillations in Ni electrodisso-
lution (HN-NDR system). (a) Polarization curve atRΩ ) 1200 Ω
without and with added pseudo-capacitance (solid and dashed line,
respectively)Cd* ) 0.694 F (scan rate: 0.8 mV/s). For oscillations
only the current minima and maxima are shown; annotations are the
same as in previous figures; SLssaddle-loop bifurcation.

Figure 6. Simulations: Effect of changing the time scale associated
with the electrode potential on current oscillations in Zn electrodepo-
sition (S-NDR system). (a) Inducing oscillations atV ) -55 mV by
increasing the value ofCd from 2.5µF cm-2 to 2.5 F cm-2 at t ) 300
s (shown by an arrow). (b) Bifurcation diagram atCd ) 2.5 µF cm-2

as a function ofV. (c) Bifurcation diagram as a function ofV at Cd )
2.5 F cm-2. LP: saddle-node bifurcation of a periodic orbit. (d)
Bifurcation diagram atV ) -55 mV as a function ofCd. (e) Two
parameter bifurcation diagram showing the locus of Hopf bifurcations.
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6e). Below this value, no oscillations are possible. It is also
seen from the figure that larger pseudo-capacitance results in
wider potential region for oscillations.

Experiments. Current oscillations are induced during Zn
electrodissolution by using the differential control algorithm such
that pseudo-capacitance is generated in the order of few Farads.
Figure 7a shows that oscillations of nearly constant amplitude
occur aboveCd* ) 2.5 F; both the magnitude ofCd* and the
qualitative features of the oscillations are similar to those
predicted by the numerical simulations (see Figure 6d for
comparison). Figure 7b shows the maxima and minima of
oscillations with increasing overpotential at a fairly large value
of Cd*. (The dashed line shows the steady-state current measured
with no pseudo-capacitance.) At about-1082 mV, current
oscillations appear that are stable until the potential values are
decreased to as low as-1100 mV (experiments below-1100
mV were less reproducible because of some nonstationary
processes resulting in large increase of cathodic current). The
experimental observations are in excellent agreement with the
results of numerical simulations predicting that the electrode
potential plays the role of a slow stabilizer in the oscillatory
feedback loop provided that its variation is slowed by adding
pseudo-capacitance.

4. Discussions

Investigation of oscillatory chemical reactions is a demanding
task that typically requires a combination of devoted experi-
mental and numerical studies. First, one has to collect as much
information on the dynamical behavior of the system as possible.
Then, the reaction mechanism (and kinetic equations) must be
constructed with “reasonable” details that reproduce the obser-
vations. Our work contributes to the first step. Traditionally,
dynamical information is limited to the observation of stable
states and their qualitative change as some parameters are varied.
Techniques have been develop to extract various dynamical
information: quenching can be used to determine eigenvalues
and eigenvectors;27 procedures are being developed to recon-
struct the Jacobian matrices from pulse perturbations and
delayed feedbacks4,28 and to identify bifurcations from direct
experiments.29,30Modern control techniques can also be applied
to stabilize unstable periodic orbits20,31 and steady states.32

In this study, we applied a differential controller to oscillatory
chemical reactions in order to gain direct dynamical information.
The major role of the controller is to change the time scale
associated with a variable for which it has been applied.
Obviously, if the controlled variable is dynamically nonessential,
the controller does not affect the oscillatory dynamics. Thus,
the differential controller provides direct information on whether

a certain chemical species (or a variable) is essential or not.
Since most oscillations require the appropriate timing of the
slow stabilizing and the fast destabilizing feedback loops,
changing the time scale of variation of a single species can have
strong effect on the dynamics. On one hand, slowing-down fast
destabilizing species or speeding-up slow stabilizing species can
destroy oscillations. We demonstrated the suppression of current
oscillations during Cu and Ni electrodissolution by slowing-
down the variation of electrode potential. Since the mechanism
of the destruction of the oscillations is general, it is independent
of the type of bifurcation through which the oscillations
developed; we have demonstrated the cessation of oscillations
that were created by Hopf or saddle-loop bifurcations and in
some cases by saddle-node bifurcations of periodic orbits. On
the other hand, we also demonstrated (with studying Zn
electrodeposition) that oscillations can be induced by changing
the time scale of the variation of a variable that is originally
too fast for oscillations to arise. Thus, the proposed method
could find application in designing oscillators; there seems to
be a renewed interest in designing oscillatory chemical systems33

for potential applications in drug delivery34,35 and chemo-
mechanical gel systems.36,37

We have also applied the proposed control method for the
classification of oscillating electrochemical systems. There exist
a surprisingly large number of oscillatory electrochemical
reactions mainly because of the important role of the electrode
potential.8,9 An operational approach to the classification was
proposed earlier based on the role of electrode potential.7 The
classification requires the investigation of the system’s dynamics
as a function of added external resistance. Here, we suggest a
complementary approach based on a differential controller that
can be used as a versatile tool for the task of identification.
The recursive feedback controller can be applied to add (positive
or negative) pseudo-capacitance to the inherent double-layer
capacitance of the system. We have demonstrated that in systems
of which the electrode potential plays the role of a fast activator
species (N-NDR and HN-NDR type) the added pseudo-
capacitance destroys the oscillations through Hopf bifurcation.
We also demonstrated that in an electrochemical system in
which the electrode potential plays the role of slow inhibitor
(S-NDR) current oscillations occur at large capacitance values
only. The qualitatively different behavior is indicative of basic
difference in the underlying kinetics. Derivative controller was
previously used to study the dynamics of H2 electrooxidation;38

however, in that study no recursive algorithm was used for the
feedback, and thus the information related to the reaction
mechanism is limited.

Our numerical simulations are in excellent agreement with
the experimental observations about the effect of changing the
double-layer capacitance. Since the double-layer capacitance is
a vital parameter in these models, the agreement between
calculations and experiments is a strong indication that the
theory of electrochemical oscillators8,9sconsidering the effect
of electrode potentialsis on strong fundamental basis.

The addition of pseudo-capacitance was carried out with a
feedback controller; this provides a wide range of capacitance
values limited only by the stability of the algorithm. (Note that
even negative capacitance can be implemented.) Pseudo-
capacitance can also be generated chemically; it can arise at an
electrode when the extent of the faradaically admitted charge
depends linearly (or approximately linearly) on the applied
voltage: this capacitance is faradaic in origin and not electro-
static.39 Two known types of materials that exhibit this behavior
are conducting polymers and RuO2.40 The effect of changing

Figure 7. Experiments: Effect of changing the time scale associated
with the electrode potential on current oscillations in Zn electrodepo-
sition (S-NDR system). (a) One parameter bifurcation diagram atVo

) -1100 mV andRΩ ) 9.7 Ω showing the minima and maxima of
current oscillations as a function of the pseudo-capacitanceCd*. (b)
One parameter bifurcation diagrams atRΩ ) 9.7Ω with respect to the
circuit potentialV: dashed line,Cd* ) 0 F; solid line,Cd* ) 20.0 F.
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the capacitance of an electrode by polyaniline film was described
in galvanostatic oscillations during formic acid oxidation.41 The
application of these materials to design electrochemical oscil-
lators is a promising option but hardship could arise due to the
required large changes in the capacitance; our method allows
effects on the order of few F/cm2 while materials exhibit pseudo-
capacitances on the order of few mF/cm2 only.40

Although the application of changing time scales with
differential controller was demonstrated with electrochemical
systems, it is certainly not limited to this field of interest.
Feedback controllers can be designed, for example, for continu-
ously fed stirred reactors where the inlet concentrations of
chemicals could be changed proportional to the concurrently
determined time derivative of concentrations. Such studies
would give direct information on the role of essential species
and thus provide valuable information about the oscillatory
dynamics. The approach could also be applied to biological
systems where rhythms, generated typically by large reaction
networks of limited kinetic information, are widespread.42
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